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Abstract

This report describes the temporal constraint propagator of the OZONE framework
for planning and scheduling applications. The role of the propagator is to maintain
temporal consistency in networks of activities, enforcing temporal constraints and
limiting the search needed when generating a schedule. Unlike some other time
bound propagators based on various shortest path algorithms, this one is based on the
well-known AC-3 arc consistency algorithm by A.K.Mackworth.

In addition to documenting the constraint propagation architecture of OZONE and the
functional requirements of the propagator, as well as describing the actual propagation
algorithm, this report serves as a programmer’s reference to the functional interface
to the propagator. It also gives has notes about the internal design of the system and
documents the most important internal functions.
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Chapter 1

Introduction

This report will provide a description of the temporal constraint propagator (the “Time
Bound Propagator”, or TBP for short) of the OZONE! Planning and Scheduling Toolkit
[8]. The TBP is one of the core services provided by the OZONE toolkit. Its purposeisto
maintain temporal consistency in networks of activities, enforcing temporal constraints
and limiting the search needed when generating a schedule.

This manual consists of four separate parts: This chapter will give an overview of
the constraint propagation architecture of OZONE, as well as outline the design re-
quirements for the TBP. Chapter 2 will describe the actual propagation algorithm used.
Chapter 3 documents the API available for calling the TBF, and Chapter 4 documents
some of the internal functions of the system.

1.1 Functional Requirements

The current TBP of OZONE represents an extension of capabilities compared to the
old OPIS TBP[6]. The functional requirements for the new propagator are:

1. Ability to represent points in time as intervals, and constraints — including op-
eration duration constraints — in terms of upper and lower bounds, with possibly
an infinite upper bound.

2. Ability to propagate changes in time bounds in activity graphs. These structures
are directed acyclic graphs with possibly multiple sources and sinks. Cycles are
not allowed.

1“QZONE” = O3 = “Object-Oriented OPIS,” previously “DITOPS.”




3. Ability to propagate changes in time boundsin a hierarchical representation of
activities. Hierarchies may consist of OR-nodes (alternatives) and AND-nodes

(aggregation).
4. Ability to handle relaxation of time bounds in case of infeasible constraints.

5. Ability to initialize the time bounds of operations and operation graphs after
these structures have been created.

Requirement 2 represents an improvement over the old propagator which was only
capable of handling linear operation lineups. Requirement 4 is optional and has been
implemented in a way which allows the domain modeler to choose whether to use this

feature or not.

In comparison to Tachyon [11] — another temporal reasoning tool developed in the
ARPA /Rome Labs Planning Initiative — we can make the following observations with
respect to the design desiderata for Tachyon as outlined by Stillman (the reader is
referred to [11] for details):

e Ability to deal with uncertainty: OZONE can handle the same way Tachyon
does since all time points are represented by intervals (requirement 1 above).

o Ability to express both qualitative and quantitative constraints: again, OZONE
handles this in the same way Tachyon does (requirements 1 and 2).

e Ability to express parameterized qualitative constraints: ditto (requirement 1).

e Ability to provide multiple granularities of time: OZONE's time representation
allows this.

e OZONE can also handle hierarchical representations of activities which Tachyon
cannot (requirement 3).

1.2 Constraint Propagation Architecture

In OZONE, temporal constraint propagation functionality is separate from basic ac-
tivity representation. The base class for activity modeling, operation, makes no
assumptions about the TBP; in fact, it does not even make assumptions about start-
and end-times in general. The basic idea in OZONE is that when a domain model is
built, appropriate mixin classes are mixed with the operation class, providing the re-
sulting activity class the ability to manage time bounds and temporal constraints. The
framework provides a protocol for enforcing temporal consistency (these functions, as
well as other functions in the TBP API are described in Chapter 3).
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The following is a list of (mostly mixin) classes which can be used when building a
domain model and associated temporal constraint management:

’ e earliest-latest-mixinisa mixin class which provides four time bounds for

- activities: the earliest and latest start times as well as the earliest and latest end
times (one can think of this as both start- and end-times being represented by an
interval).

e relation-owner-mixinismixin class which provides activities with the abil-
ity to “own” temporal relations, in other words to be linked to each other using
temporal relations (the base class for temporal relations is called relation).

e monotonic-tbp-mixin is a mixin class which implements the basic OZONE
propagation algorithm, a version of Mackworth’s AC-3 [7] modified for continu-
ous, monotonic domains (see Chapter 2 for a description of this algorithm). This
class actually inherits from both earliest-latest-mixin and relation-
-owner-mixin.

e relationisthebase class for temporal relations. Subclasses of this class include
before, same-start and same-end. Normally, these relation classes do not
need to be subclassed in a domain model.

1.3 Applications of OZONE TBP

The Time Bound Propagator described in this document has been used in various
applications built using the OZONE Planning and Scheduling Framework. As the
standard temporal constraint propagator for OZONE, the propagator has been used
with the domain models built for the DITOPS scheduler, as well as with some other
more diverse planning applications. These include the following:

e The first application of the propagator was with the IFD3 Plan Feasibility
Checker built as a component of the IFD3 TARGET system (for the ARPA/Rome
Labs Planning Initiative), and performed feasibility checks on plans created by
TARGET, a decision support tool for authoring military course-of-action plans
(see, for example, [2]).

¢ The DITOPS Transportation Scheduler has served as a research prototype and

technology demonstrator in the ARPA /Rome Labs Planning Initiative, with var-

. ious domain models for solving strategic deployment problems encountered by
the US Transportation Command (TRANSCOM), including models of the IFD2

scenarios [9].




e The DITOPS Medical Evacuation Planner is a prototype planning application
for reactive maintenance of aeromedical evacuation plans. In this application
the role of the propagator is critical as it is used for detecting inconsistencies in

patient itineraries [4].
e A model originally built for the OPIS scheduler of a Westinghouse turbine plant

was ported to OZONE, demonstrating — among other things — the suitability
of the propagator for maintaining temporal information about manufacturing

process routings.



Chapter 2

Propagation Algorithm

The propagation algorithm has two distinct but interacting parts: the horizontal prop-
agator and the vertical propagator.

e The role of the horizontal propagator is to propagate changes in time-bounds in
an operation graph. The graph is understood to consist of time points connected
by temporal relations. Since OZONE represents activities as single entities, activ-
ities are thought of as relations — duration constraints — between their respective
start- and end times.

e The vertical propagator operates on hierarchical representations of activities.
OZONE recognizes two different kinds of hierarchical relations between an ac-
tivity and its “children”: The OR relation represents alternatives, the children are
understood to be alternative representations of the parent activity; the AND rela-
tion represents aggregation, where the children form an operation graph which
represents the substructure of the parent operation. The role of the vertical prop-
agator is to propagate changes up and/or down in this hierarchy, calling the
horizontal propagator to handle the lateral propagation.

The system can handle a number of different kinds of temporal relations. each tempo-
ral relation class can be used to represent a constraint between a start- or end-time of
an activity and a start- or end-time of another activity. Temporal relations also have
metric bounds, allowing for minimum and maximum separation of the constrained
time points. The temporal relations currently handled by the system (and their corre-
spondence to relations defined by Allen [1]) are:

e Before is a relation between the end-time of an activity and the start-time of
another. With respect to Allen’s relations, it can be used to implement both
“before” and “meets.”




o Same-start is a relation between the start-times of two activities. It can be used
for Allen’s “starts” and “overlaps” -relations.

o Same-end is a relation between the end-times of two activities. It can be used to
implement “finishes” and “overlaps.”

Together the last two can be used to implement “equal” and “during”, thus the available
relations cover all of Allen’s interval relations.

2.1 Horizontal Propagator

The horizontal propagator is basically an arc consistency algorithm for temporal rela-
tions, based on Mackworth’s AC-3 -algorithm [7], and very much akin to the propaga-
tion algorithm of Térmé [12] used in the DOM scheduler [5, 13]. The general idea of
the horizontal propagation algorithm is given below. Please note that since activities
themselves are thought of as temporal relations between start- and end-times (i.e., du-
ration constraints), the algorithm can operate in terms of time points and arcs between

them.

Algorithm TBP: Given an activity graph G consisting of time points and relations {r},
change the bounds of the time points so that all relations are consistent.

1. Establish an empty queue Q of relations (arcs), and place some relations from the
activity graph G into the queue (see an explanation below about which relations

to pick).

2. Remove first relation  from the queue @, and make it consistent (see explanation
below about how consistency is achieved).

3. If there was a change in time bounds due to making r consistent, place all affected
relations from G into queue Q. Any relations already in the queue are ignored.

4. If the queue Q is not empty, loop back to step 2.

The current implementation of the propagator (class monotonic- tbp-mixin) oper-
ates on time bounds in a monotonic fashion. In other words, during propagation the
time bounds can only “move” in one direction. When a relation is made consistent, the
following considerations are important: (1) Constraints are arcs between time points,
(2) time points (in the current implementation) consist of an upper and a lower bound
(i.e., earliest and latest), and (3) for any invocation of the propagator, either earliest or
latest bounds are modified.




Figure 2.1 depicts an example of propagation from time bound A through relation r to
time bound B. Given a minimum separation of d for r, the relation is made consistent
(after a positive change in A) as follows:

- e If A+ d < B then do nothing.

e If the activity that “owns” B has already been scheduled, time bounds cannot be
changed: signal a time bound conflict.

e Otherwise, change B to A + d and add all relations involving B to the queue.

propagation
direction .

A B

Figure 2.1: Relation Propagation Example

If the original change had taken place in B (positive change, i.e. still going forward),
the relation 7 instead of “pushing” now “pulls” A (if A is further away from B than
the maximum separation of r). In general, propagation can proceed either forward
or backward, and depending on which way relations are traversed, they either push
or pull other time bounds. Because OZONE represents activity graphs in terms of
activities and not in terms of time points, each relation type has specific “propagation”
behavior, effectively implementing the time point -based algorithm.

2.1.1 Relaxation of Time Bounds

The TBP has the capability of relaxing time bounds in a situation where a feasible
configuration of bounds cannot be found. Relaxation can only happen “forward”, that
is, the propagator will relax end-times.

When the propagator is proceeding backwards (i.e., tightening end-times), and cannot
- (because resource unavailability) establish feasible bounds, relaxation is optional: The
propagator is called recursively to propagate forward, disregarding any posted due
dates. After the forward propagation the backward propagation is resumed. What
) happens in actuality is that the propagator is trying to “push” bounds backward, and
failing to do so pushes them forward to allow for a feasible solution.




2.2 Vertical Propagator

The vertical propagator is a control structure on top of the horizontal propagator. To
understand how it works we first have to review the modeling assumptions. An
activity hierarchy in OZONE consists of (currently) three types of activities:

o OR-nodes represent alternatives. For example, Figure 2.2 depicts an activity node
N which actually consists of three alternatives N1, N2 and N3. When this activ-
ity gets scheduled, one (and only one) of the alternatives from its substructure
gets picked (typically these represent resource alternatives, but they could also
represent alternative routings if N1, N2 and N3 had any substructure).

e AND-nodes represent entire activity graphs. For example, Figure 2.3 depicts
an activity node N which actually represents an activity graph consisting of
activities N1, N2 and N3. When this activity gets scheduled, all of the activities
in the substructure have to be scheduled. Any number of the nodes N1, N2, etc.
may be sources and/or sinks of the directed acyclic graph node N represents (in
fact, N may represent a set of acyclic graphs). Activity graphs in OZONE are
formed by connecting activities with temporal relations.

e Leaf nodes represent individual activities. They have no substructure.

parent-child —relations

"root" node

alternatives - N1

Figure 2.2: Example of an OR-node

Please note that temporal relations are always placed between nodes sharing the same
parent (thus they are also at the same level in an activity hierarchy).

The vertical propagator gets invoked in two different situations: When (1) an activity
or activity graph has been propagated horizontally, the influences are then propagated
upwards, and (2) during horizontal propagation when either an AND-node or an OR-
node is encountered, their time bounds are verified by propagating at a lower level.

When propagating up, the behavior is different for AND- and OR-nodes:



e For AND-nodes, when propagating forward a candidate start time is simply the
minimum of their children’s start times; the horizontal propagator is then called
to propagate the potential change in start time. When propagating backward
a candidate end time is the maximum of children’s end times; the horizontal
propagator is then called to propagate the potential change in end time.

e For OR-nodes, the new start end end times are the minimum start time and
maximum end time of their children (or if the activity from which upward prop-
agation was invoked has already been scheduled, simply the start and end times
of this activity). The horizontal propagator is called after all relations linked to
the OR-node have been queued.

When propagating downwards, the horizontal propagator is simply called for all child
roots of a node. For OR-nodes, all children are roots; for AND-nodes, two sets of roots
are maintained: sources or forward roots, and sinks or backward roots.

parent-child —relations

"root" node e N

a Cth]ty g rap h N 1 - N 2

temporal relations

Figure 2.3: Example of an AND-node
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Chapter 3

Propagator APl

This chapter describes the API for the Time Bound Propagator. The actual propagator
has been implemented as an operation mixin class monotonic-tbp-mixin. Rela-
tions (base class relation) each have their own propagation method; for reasons of
consistency, operations (that is, instances of monotonic-tbp-mixin)are also treated
as temporal relations between their starting and ending points.

3.1 Essential Propagator API

This section documents the essential, most frequently called functions and variables of
the propagator.

operation-update-time-bounds [Generic function]
operation '
s&key point-mode
change-mode
upwardsp

This generic function calls the propagator to update the time bounds of operation
(assuming the state of operation has changed) and other associated operations. It uses
information about the operations’ temporal relations to deduce which operations are
affected by the change.

The parameter point-mode should be either : earliest (the default) or : latest, and
will determine whether the time bound propagator will propagate earliest or latest
times.

The parameter change-mode should be either : increase (the default) or : decrease,

11




giving the direction of propagation.

The parameter duration-mode should be either :min (the default) or :max, indicating
the type of durations that are to be used during propagation.

The function operation-update-time-bounds supports three different modes of
operation: (1) the default mode (when no keyword parameters are passed) consists
of two propagation passes, one with :earliest and :increase, the other with
.1atest and :decrease (:min duration mode is used); (2) the initialization mode
(when initial start time st and end time ft are passed) is like the default mode, but
bounds are first initialized (end time relaxation may also happen); and (3) the specific
mode (when -mode parameters are passed) consists of a single pass with specific mode

parameters.
*tbp-check-resources-p* [Variable]

This variable, which defaults to true, is used in deciding whether the propagator
should check resource availability when modifying time bounds (i.e., make calls to

find-available-time).

link-operation [Generic function]

operation
target
relation-class
lower-bound
upper-bound
&key name

This generic function creates a temporal relation (instantiated from relation-class, a sub-
class of temporal-relation)using lower-bound and upper-bound as the initialization
arguments, between operation and target (both operations). The relation will be added
to the relations of operation and target.

The parameter name can be used to name the relation instance (it defaults to nil, i.e.
no name).

3.2 Propagator Protocol

This section documents the rest of the functional protocol of the Time Bound Propa-
gator. The protocol consists of generic function for which various propagator-related
entities have to define methods.

operation-est [Generic function]

operation

12



This function accesses the earliest start time of an operation.

operation-eft
operation

This function accesses the earliest finish time of an operation.

operation-lst
operation

This function accesses the latest start time of an operation.

operation-1ft
operation

This function accesses the latest finish time of an operation.

operation-initialize-time-bounds
operation
&key st
ft
est
eft
Ist
Ift
status
&allow-other-keys

[Generic function]

[Generic function]

[Generic function]

[Generic function]

This function can be used to initialize the time bounds of an operation. Calling this
function will only modify operation but will not invoke the propagator on any temporal
relations connected to operation. The keyword parameters st and ft allow start- and
end-times to be initialized without concern to any earliest/latest issues. The parameter
status allows the operation’s scheduled/unscheduled status to be initialized. See the
OZONE library manual description for the class operation for details.

tbp-reversible-p
operation

[Generic function]

This function should return true if time bound relaxation is allowed by switching

propagation direction when propagating backward.

operation-relations
operation

[Generic function]

This function accesses the set of temporal relations connected to operation.

operation-forward-child-roots
operation

13
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This function accesses the set of forward propagation roots of operation. These roots
are those children of the operation which act as propagation sources when the vertical

propagator is invoked.

operation-backward-child-roots [Generic function]
operation

This function accesses the set of backward propagation roots of operation. These roots

are those children of the operation which act as propagation sinks when the vertical

propagator is invoked.

relation-from-operation [Generic function]
relation

This function accesses the starting point of a relation.

relation-to-operation [Generic function]
relation

This function accesses the end point of a relation.

relation-lower-bound [Generic function]
relation

This function accesses the minimum separation value of a relation.

relation-upper-bound [Generic function]
relation

This function accesses the maximum separation value of a relation (nil if no upper
bound has been specified).

queue-relation [Generic function]

relation
source-to-sink-p

This function queues a relation for subsequent consideration by the propagator. The
parameter source-to-sink-p indicates the direction of propagation: true indicates start-
to-end -direction, nil indicates end-to-start -direction.

relation-affected-by-change-p [Generic function]
relation
source-to-sink-p
st-changed-p

This is a predicate function for determining whether a particular relation is affected by
a given change in time bounds. The source-to-sink-p parameter indicates the direction
of the propagation, the st-changed-p is true is a start time changed, nil is an end time

14



changed. Relation classes should define methods for this generic function to indicate
how they relate to the time points of an operation.

propagate [Generic function]
entity
source-to-sink-p

Methods of this generic function implement the time bound propagation over temporal
intervals.

3.3 Propagator Classes

This section documents the various classes that make up the Time Bound Propagator
functionality.

earliest-latest-mixin [Class]

Subclasses of this class include monotonic-tbp-mixin. This is a mixin class which
provides four time bounds for activities: the earliest and latest start times as well as the
earliest and latest end times (one can think of this as both start- and end-times being
represented by an interval).

operation-est [Method]
(self earliest-latest-mixin)

(setf operation-est) [Method]
value

(selfearliest-latest-mixin)

These methods access the slot est. This slot holds the earliest start time.

operation-eft [Method]
(self earliest-latest-mixin)

(setf operation-eft) [Method]
value

(self earliest-latest-mixin)

These methods access the slot eft. This slot holds the earliest finish time.

operation-lst [Method]
(self earliest-latest-mixin)

(setf operation-lst) [Method]
value

(self earliest-latest-mixin)

These methods access the slot 1st. This slot holds the latest start time.

15




operation-1ft [Method]
(selfearliest—latest—mixin)

(setf operation-1£ft) [Method]
value
(self earliest-latest-mixin)

These methods access the slot 1f£t. This slot holds the latest finish time.

initialize-instance [after method]
(self earliest-latest-mixin)
&rest initargs
&key st
ft
est
eft

Ist

Ift

status
This method calls operation—initialize—time—bounds.

operation-initialize-time-bounds [Method]
(self earliest- latest-mixin)
&key st

ft

est

3 eft
Ist

Ift
status
sallow-other-keys

This method implements the specified functionality of its generic function.

tbp-reversible-p [Method]
(operation earliest-latest-mixin)

This method always returns nil.
relation-owner-mixin [Class]

Subclasses of this class include monotonic-tbp-mixin. This is mixin class which
provides activities with the ability to “own” temporal relations, in other words to be
linked to each other using temporal relations (the base class for temporal relations is
called relation).

Mixing relation-owner-mixin with an operation class provides automatic main-
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tenance of the forward- and backward-roots required for lower-level propagation. This
behavior is implemented using mechanisms from OZONE’s aggregate class.

operation-relations [Method]
(self relation-owner-mixin)

operation-add-relation [Method]
value

(self relation-owner-mixin)
&optional updatep
operation-remove-relation [Method]
value
(self relation-owner-mixin)
&optional updatep

These methods access the slot relations. This slot holds the relations “owned” by
this entity.

operation-forward-child-roots [Method]
(self relation-owner-mixin)

(setf operation-forward-child-roots) [Method]
value

(self relation-owner-mixin)

These methods access the slot forward-child-roots. This slot holds the “sources”
for lower-level propagation.

operation-backward-child-roots [Method]
(self relation-owner-mixin)

(setf operation-backward-child-roots) [Method]
value

(self relation-owner-mixin)

These methods access the slot backward-child-roots. This slot holds the “sinks”
for lower-level propagation.

link-operation [Method]
(operation relation-owner-mixin)
(target relation-owner-mixin)
relation-class
lower-bound
upper-bound
&key name

This method implements the specified functionality of its generic function.

17




[Class]

monotonic-tbp-mixin

This class inherits directly fromearl iest-latest-mixinandrelation-owner-mixin.
This mixin class implements the Time Bound Propagator. The propagator utilizes tentpo-

+al relations to maintain time windows of feasible allocation intervals. The propagator

also utilizies the four slots est, 1st, eft and 1t (from operation) that contain the

time bounds of the operation: the earliest start time, the latest start time, the earliest finish

time and the latest finish time. After an operation has been scheduled, the est and 1ft

slots contain the actual start and end time of the operation.

Specializing this class provides a way of extending the time bound propagation be-
havior of the system.

operation-update-time-bounds [Method]
(operation monotonic-tbp-mixin)
skey point-mode
change-mode
upwardsp
s&allow-other-keys

This method implements the specified functionality of its generic function.

tbp-reversible-p [Method]
(operation monotonic-tbp-mixin)

This method always returns true.

queue-relation [Method]
(relation monotonic-tbp-mixin)
source-to-sink-p

This method implements the specified functionality of its generic function.

[Method]

propagate
(relation monotonic-tbp-mixin)
source-to-sink-p

This method propagates influences from start time to end time (when source-to-sink-p
is true) or vice versa.

3.4 Temporal Relation Classes

[Class]

relation
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: from-operation [Initarg]

:to-operation [Initarg]
: lower-bound [Initarg]
:upper-bound [Initarg]

Subclasses of this class include same-end, same-start and before. This is the base
class for all temporal relations. Instances of this class have two slots that represent the

‘lower and upper bounds of the time difference between the start and/or end times of
the two operations connected by this relation.

relation-from-operation [Method]
(self relation)

(setf relation-from-operation) [Method]
value
(selff relation)

These methods access the slot from-operation. This slot holds the operation from
which this relation originates.

relation-to-operation [Method]
(self relation)

(setf relation-to-operation) [Method]
value
(selfrelation)

These methods access the slot to-operation. This slot holds the operation to which
this relation points.

relation-lower-bound [Method]
(self relation)

(setf relation-lower-bound) [Method]
value
(self relation)

These methods access the slot 1ower-bound. This slot holds the lower bound time
difference of the temporal relation. It defaults to 0.

relation-upper-bound [Method]
(self relation)

(setf relation-upper-bound) [Method]
value
(self relation)

These methods access the slot upper-bound. This slot holds the upper bound time
difference of the temporal relation. It defaults to ~time-infinite-.

19




[Class]

before

This class inherits directly from relation. Relations of this class represent the differ-
ence between the end time of a preceding operation and the start time of a succeeding
operation.

relation-affected-by-change-p [Method]
(relation before)
source-to-sink-p
st-changed-p

This method returns st-changed-p XOR source-to-sink-p.

propagate [Method]
(relation before)
source-to-sink-p
This method implements the specified functionality of its generic function.
same-start [Class]

This class inherits directly from relation. Relations of this class represent the differ-
ence between the start times of two operations.

relation-affected-by-change-p [Method]
(relation same-start)
source-to-sink-p
st-changed-p

This method returns st-changed-p.

propagate [Method]
(relation same-start)
source-to-sink-p
This method implements the specified functionality of its generic function.
same-end [Class]

This class inherits directly from relation. Relations of this class represent the differ-
ence between the end times of two operations.

relation-affected-by-change-p [Method]
(relation same-end)
source-to-sink-p
st-changed-p

This method returns the negation of st-changed-p.
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propagate [Method]
(relation same-end)
source-to-sink-p

This method implements the specified functionality of its generic function.

3.5 Propagator Conflicts

This section describes the various conflicts the Time Bound Propagator can signal. In
the current implementation conflicts are Common Lisp conditions, which allows them
to be signalled independent of the control structure or calling context of the library.

Before propagating, an activity graph is analyzed for its topological properties (in
actuality the cycle checking takes place during the maintenance of the “child roots”).
This may give rise to various conflicts: '

(1) “cycle conflicts” indicate that the activity graph is not acyclic. The cycle detection
is a simplified topological sort, where all relations are treated equal, activities are
assumed to be points in time (that is, to have zero duration) and metric bounds are
not taken into account. Sorting works so that we find one activity with no incoming
relations, delete that and its outgoing relations, and loop. If no activity can be found
with no incoming relations, a cycle is found. In this case, all remaining activities and
relations are placed in the cycle conflict object (they contain the cycle, though the set is
not minimal).

(2) “disconnected subgraph conflicts” indicate that the graph in question actually
consists of several independent subgraphs. This situation is legal and propagator can
handle it, but a conflict is signalled just in case.

Conflicts detected during propagation are “time bound violations” (where an earliest
start or finish time becomes greater that the corresponding latest time) and “resource
unavailability conflicts” (where the required resources for an activity are not available
during the inferred time window). Resource unavailability will be detected first, when
propagating over a relation. A new start or end time is computed as follows: the
relation “pushes” or “pulls” the time point, after which a suitable point is determined
by resource availability; if resource is not available within the window, a resource
conflict is posted. After successfully computing the start or end time, it is validated by
checking it against the corresponding latest time (given we are computing the earliest
time, or vice versa). If the earliest advances beyond the latest, a time bound violation
is posted.

tbp-conflict [Class]

This class inherits directly from time-conflict and common-condition-base.
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Subclasses of this class include resource-unavai labilityand time-bound-violation.
This is the base class of all conflicts created by the Time Bound Propagator. It exists for
ontological purposes, and no specific functionality has been defined for this class.

time-bound-violation [Class]
This class inherits directly from tbp-conflict. This conflict will be posted when an

earliest time bound surpasses a latest time bound.

resource-unavailability [Class]
:st-related-p [Initarg]

This class inherits directly from tbp-conflict. This conflict is posted when (if) the
propagator queries for resource availability while validating time bounds and finds
the resource in question to be unavailable (i.e, no available capacity on the resource).

conflict-st-related-p [Method]
(self resource-unavailability)

This method accesses the slot st-related-p.

conflict-earliest-bound-p [Method]
(self resource-unavailability)

This method accesses the slot earliest-bound-p.

conflict-bound-increase-p [Method]
(selfresource—unavailability)

This method accesses the slot bound-increase-p.

disconnected-subgraphs [Class]

: subgraphs [Initarg]

This class inherits directly from solution-structure-conflict. This conflict is
signalled when disconnected subgraphs are detected during relation maintenance. It
is possible to ignore this conflict.

conflict-subgraphs [Method]
( self disconnected-subgraphs)

This method accesses the slot subgraphs. This slot holds lists which represent sets of
activities of the individual subgraphs detected.
[Class]

cyclic-operation-graph

This class inherits directly from solution-structure-conflict. This conflict
is signalled when an activity graph is found not to be acyclic. The condition object
contains a set of activities which are participating in the detected cycle.
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Chapter 4

Internal Implementation

This chapter describes the internal implementation of the monotonic propagation
mechanism. These descriptions are relevant when extending this mechanism (i.e.,
when subclassing monotonic-tbp-mixin). Some of these functions may also be
used when writing a completely new propagator.

4.1 Propagator Globals

These global variables have a meaningful value only during an invocation of the
propagator. It is an error to access them at any other time.

*tbp-mode-earliest-p* [Variable]

When true, signifies that the propagator is manipulating earliest bounds (during an
invocation either earliest or latest bounds are modified, not both).

*tbp-mode-increase-p* [Variable]

When true, signifies that the propagator is modifying time bounds by increasing them
(the propagator has monotonic time bound behavior).

*tbp-max-peeled-capacity* [Variable]

This variable is used when computing the maximum amount of capacity “peeled”
during an invocation of the propagator. It is only used if the propagator has been
instructed to check resource availability (i.e., if *tbp-check-resources-p*is true).
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4.2 Propagation Engine

The “propagation engine” uses a queue of temporal relations which are yet tobe “made
consistent”, i.e. are potentially inconsistent. Any change in a time bound will cause
those relations which are affected by the change to be placed in the queue. Any relation
already in the queue will not be queued twice.

tbp [Macro]

queueing-form

This macro will invoke the propagation engine. The parameter queueing-form is a
form the execution of which will have the side effect of placing some relations in the
propagator queue (either by calling queue-relation or queue-relations). This
macro will establish an empty dynamic binding for the queue, allowing recursive,
re-entrant invocations of the propagator.

queue-relations [Function]

relations
operation
st-changed-p

This function will queue all relations in relations. It is called as a result of change
in operation, an operation instance. The boolean parameter st-changed-p will indicate
whether the change affected the start time (true value) or the end-time (nil value).
Queuing of individual relations is done by calling queue-relation.

*tbp-queue* [Variable]

This variable holds the propagator queue (a list of queued relations).

make-qgr [Macro]
relation

source-to-sink-p

This macro — which is called like a function — constructs a queued relation element.
In the current implementation this is a cons whose car is the relation and cdr is the

source-to-sink-p value (indicating the propagation direction).
[Macro]

gr-relation
qr

This macro — which is called like a function — accesses the relation part of a queued

relation.

gr-source-to-sink-p [Macro]
qr
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This macro — which is called like a function — accesses the propagation direction part
of a queued relation.
qr-eq [Function]
rl
r2

This predicate is true is two queued relations can be considered the same relation (i.e.,
both the relation and the propagation direction are the same).

4.3 Time Bound Manipulation

There are several “helper functions” which can be used when manipulating time
bounds during propagation.

operation-st [Function]
operation

Based on the value of *tbp-mode-earliest-p* this function will return the result
of either operation-est or operation-1lst.

(setf operation-st) [Function]
st
operation

Based on the value of *tbp-mode-earliest-p* this function will set the value of
either operation-est or operation-1lst tost.

operation-ft [Function]
operation

Based on the value of *tbp-mode-earliest-p* this function will return the result
of either operation-eft or operation-1£ft.

(setf operation-ft) [Function]

ft

operation

Based on the value of *tbp-mode-earliest-p* this function will set the value of
either operation-eft or operation-1£ft toft.

>tbp [Function]
x
y

If * tbp-mode-increase-p* is true (i.e., the propagation is proceeding forward), this
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function is equivalent to the function >. When propagating backward, it is equivalent
to the function <.

propagate-change-p [Function]

relation
new-time
old-time

The values used internally for propagation reasons are either activities (i.e., duration con-
straints), temporal relations (i.e., precedence constraints) and the value t, signifying
forced propagation (see the next section on “Propagation Methods.” Given a propa-
gation reason relation, this predicate function returns true if the time value new-value,
when replacing old-value, should cause changes and subsequent queuing of associated
relations. In practice, this function is true if either of the following conditions is true:
(1) >tbp, when called for new-value and old-value, returns true, or (2) when relation is t.

4.4 Propagation Methods

This section documents the generic function and associated methods which implement
the propagator.

propagate-st [Generic function]

operation
relation
st

Given an activity operation, a relation (propagation reason) relation, and a new (poten-
tial) start time st, this function will attempt to change the start time of operation and
queue any affected relations if change occurs.

propagate-st [Method]

(operation monotonic-tbp-mixin)
relation
st

This method implements the specified functionality of its generic function.

compute-st [Generic function]

operation

relation

st

&optional atomicp

Given an activity operation, a relation (propagation reason) relation, and a start time
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candidate st, this function will compute a new start time. The computation may cause
reentrant calls (recursive invocations) to the propagator. If the optional parameter
atomicp is true (it defaults to nil), the vertical propagator is not called to propagate
the children of operation (i.e., operation is regarded an “atomic” activity).

compute-st [Method]
(operation earliest-latest-mixin)
relation
st
&optional atomicp

This is the default method. Itignores atomicp and will never call the vertical propagator.

compute-st [Method]
(operation monotonic-tbp-mixin)
relation
st
&optional atomicp

This method augments the functionality of the corresponding default method. If opera-
tion is eq to relation (which is the case when duration constraints are being propagated),
it simply returns st (correctly assuming that the duration constraint was used when
comupting st in the first place). It will also call the vertical propagator if atomicp is not
true.

find-st [Generic function]

operation
connective
children

Given an activity operation, its connective tag connective (this is the value of the function
operation-connective), and a list of its children (possibly empty), this function
will find an appropriate start time for operation.

find-st [Method]
(operation monotonic-tbp -mixin)

connective
children

This method implements the specified functionality of its generic function.

propagate-ft [Generic function]

operation
relation

ft

This function is equivalent to propagate-st except that it operates on the end time
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of operation.

propagate-£ft [Method]

(operation monotonic-tbp-mixin)
relation
ft

This method implements the specified functionality of its generic function.

compute-ft [Generic function] .

operation
relation

ft
This function is equivalent to compute-st except that it operates on the end time of
operation. There is no option to disallow vertical propagation.

compute-ft [Method]
(operation earliest-latest-mixin)
relation
ft
This method implements the specified functionality of its generic function.
[Method]

compute-ft
(operation monotonic- tbp-mixin)
relation
ft
This method augments the functionality of the default method (see the compute-st
method for monotonic-tbp-mixin for an explanation). The default method will not
call the vertical propagator, but this method will.

compute-ft-reverse [Generic function]

operation
st

This function may be called by compute-£t to reverse the direction of propagation,
effectively allowing time bounds to be relaxed at the end of an activity graph/lineup.
This function is called only if tbp-reversible-p returns true. The exact condi-
tion for this function to be called also requires the propagator to check for resource
availability and the propagation direction to be backward. .

This function will call relax-latest-time-bounds only if latest bounds are being
propagated. In any case it will call the propagator and propagate forward using either .
the given start time st or the result of relax-latest- time-bounds.
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compute-ft-reverse [Method]
(operation monotonic- tbp-mixin)
st

This method implements the specified functionality of its generic function.

find-ft [Generic function]

operation
connective
children

This function is equivalent to find-st except that it operates on the end time of
operation.

find-ft [Method]
(operation monotonic-tbp-mixin)

connective
children

This method implements the specified functionality of its generic function.

relax-latest-time-bounds [Generic function]
operation

Relaxation happens in a situation where a time bound violation would occur otherwise.
The purpose of this function is to relax the latest bounds of operation so they are not
smaller that the earliest bounds. This function is called by compute-ft-reverse.

relax-latest-time-bounds [Method]
(operation earliest-latest-mixin)

This method implements the specified functionality of its generic function.
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